/  Materials of Construction for Process Equipment and Piping Systems
Pay Attention Please ! The course location "Taksim Square" is subject to availability . We may change the course location if there is no availability and we will let you know about the location changing directly if it changes. The exact course time will be clear before one week prior to course start date.
BMC Training provides on 7 Oct 2018 Materials of Construction for Process Equipment and Piping Systems course [Maintenance Engineering Training] in Istanbul,Turkey

Introduction

Appropriate material selection is the cornerstone of pressure equipment and piping design, operation and maintenance. The acceptability of materials is controlled by the relevant Codes. The mechanical integrity, safety, and cost-effective operation of plants depend on the in-service performance of the materials of construction throughout the plant life cycle.

This course provides comprehensive and practical understanding of engineering materials and guidance on the methods and best industry practices for the selection of the appropriate materials of construction for specific applications while simultaneously satisfying service requirements, construction Code requirements, and least life cycle costs over the entire plant life. This course will provide a practical overview of ASME BPVC Section II – Materials, as well as some relevant information from the BPVC Section VIII Div.1 and B31.3 Process Piping.

Course highlights are:

  • Types and properties of engineering materials
  • Selection and application of materials
  • Degradation of materials in service
  • Inspection strategies and Non-destructive examination
  • Fitness for Service Assessments

Objectives

The key objectives of this course are as follows:

  • Assist participants to clearly understand appropriate selection of materials of construction for pressure equipment
  • Enable delegates understand how materials affect safe, reliable and cost-effective plant operation.
  • Enhance participants’ awareness of key requirements of relevant design and operation standards and industry practices such as ASME B&PVC and B31.3; ASTM Material Specifications, API 571, 580, 581, 578 and 579, and others.
  • Provide guidelines to participants to identify and locate in-service degradation and appropriate tools for condition assessment and making sound run/repair/replace decisions.
  • Make participants recognize that although all flaws detected by inspection must be evaluated, not all flaws need to be repaired.
  • The proper application of API Std 579-1/ASME FFS-1 for fitness-for-service assessment may obviate the need for some repairs and result in reduced maintenance cost and downtime.

Content

Day 1 - Engineering Materials - Types and Properties

Engineering Materials I – Overview

  • Metals – Ferrous and non-ferrous
  • Carbon steel
    • Alloying elements added to iron base – carbon, manganese, and silicon
    • Effect of alloying elements on end properties and on fabrication processes
    • Impurities and their effect – sulfur, phosphorus
  • Alloy steel
    • Effects of alloying elements
    • Stainless steels
  • Specialty alloys
    • Corrosion resistant alloys
    • High temperature alloys
    • Erosion resistant alloys

Engineering Materials II

  • Refractory materials – Types and applications – Examples: Titanium and zirconium
  • Clad Materials – Types; production methods; and typical applications
  • Composite materials – Classes, types and applications
  • Non-Metallic materials – Plastics, ceramics
  • Surface engineered coatings/overlays – Types, specifications and applications
    • Organic coatings
    • Metallic coatings
    • Corrosion resistant cladding
    • Corrosion resistant / hard-surface welding
    • Thermal spray coatings
    • Plasma transferred arc (PTA) welded overlays

Metallurgy Basics

  • The structure of metals and alloys
  • Imperfections in metals and alloys
  • Chemical composition – Unified numbering system (UNS)
  • Physical properties – melting temperature, the thermal conductivity, electrical conductivity, the coefficient of thermal expansion, and density
  • Mechanical properties – Base metals, filler metal and completed welds
  • Tensile and yield strength, ductility, hardness and toughness
  • Heat treatment and effect on material properties

Material Forming and Fabrication

  • Forming and forging
  • Casting
  • Welding processes – main technologies and consumables currently used in industry
  • Weldability – Carbon equivalent; Shaeffler and WRC diagrams
  • Preheat and Post-Weld heat treatment (PWHT) – Code (B&PV and B31) rules
  • Weld imperfections (discontinuities) commonly encountered with welding processes

Overview of ASME B&PVC Section IX ‘Welding and Brazing Qualifications’

  • This Section contains rules relating to the qualification of welding and brazing procedures as required by other code sections for component manufacture
  • Welding procedure specification (WPS)
  • Procedure qualification record (PQR)
  • Welder performance qualification (WPQ)

Day 2 - Materials Selection and Application

Material Selection Process and Guidelines

  • Life cycle cost considerations
  • Factors in material selection in petroleum refineries- type of refinery; type of crude oil processed; service conditions in specific process unit/application, expected service life
  • Oxidation resistance – scale formation
  • Guidelines on the maximum temperature of use of carbon steel and alloy materials
  • Creep properties – The Larson-Miller parameter (LMP)
  • Fatigue properties – Fatigue design (S-N) curves

Materials Standards and Codes

  • ASME Boiler and Pressure Vessel and Piping Construction Codes
    • Allowable stresses
    • Constraints and limitations
    • P-Number identificat
  • ASTM – Some common material specifications for piping, plates, forgings and castings

Materials Standards and Codes (continued)

  • API RP 941 – Steels for hydrogen service at elevated temperatures and pressures in petroleum refineries and petrochemical plants
  • Oxidation resistance – scale formation
  • NACE MR0103 ‘Materials Resistant to Sulfide Stress Cracking in Corrosive Petroleum Refining Environments’
  • PIP (Process Industry Practices) Standards – Example: PIP Piping Material Specification 1CS2S01 Class 150, Carbon Steel, Socket Weld, 0.125 C.A. Process.
  • Fatigue properties – Fatigue design (S-N) curves
  • Overview of ASME B&PVC Section II ‘Materials Specifications’ – This Section compiles material specifications and material properties for materials used in the construction of ASME components. It contains four parts:
    • Part A-Ferrous Material Specifications
    • Part B-Nonferrous Material
    • Part C-Specifications for Welding Rods
    • Part D-Properties-(Customary)

Material Selection for Specific Equipment

  • Refineries and petrochemical plants
  • Power plants
  • Pressure vessels
  • Piping valves and fittings
  • Pumps

Day 3 - Degradation of Materials In-Service

Material Ageing and Degradation – Overview

  • Ageing is not about how old equipment is; it’s about knowledge of its condition, and how that is changing over time
  • Indicators or symptoms of ageing

Failure Modes and Mechanisms in Materials

  • Degradation processes – (e.g. corrosion, erosion)
  • Excessive elastic deformation – (e.g. buckling)
  • Fracture – (e.g. fatigue, brittle fracture)

Overview of API RP 571 Damage Mechanisms Affecting Fixed Equipment

  • This document provides background information on damage that can occur to equipment in the refining and other process industries. It covers over 60 damage mechanisms. It is also an excellent reference for inspection, operations, and maintenance personnel.

Metallurgical Failure Analysis

  • Overview
  • Case study

Positive Material Identification

  • Objectives and methodologies (e.g. X-Ray Fluorescence and Optical Emission Spectroscopy)
    • ASTM- E1916
    • Pipe Fabricator Institute PFI-ES42
    • API 578
    • MSS SP-137-2007
    • Material Test Reports

Day 4 - Inspection Strategies and Non-Destructive Examination Methods

Mechanical (Structural) Integrity – Overview

  • Definition, scope, and key elements – hardware and software issues, human factor, and asset manageme
  • Potential threats to technical integrity in a hazardous environment
  • Regulatory requirements – SH&E, OSHA, SEVESO II
  • Life cycle implications – design/operation/maintenance, management of change

Inspection Strategies and Methods

  • Real function of inspection
  • Planning and strategies

Inspection Strategies and Methods (continued)

  • Overview of API RP 580 and RBD 581 – Risk-Based Inspection
  • Overview of API RP 577 Welding Inspection and Metallurgy

Non-Destructive Examination (NDE) Methods and Their Application

  • Capability of the applicable inspection method vs. discontinuity
  • New developments in NDE methods

Overview of ASME B&PVC Section V ‘Nondestructive Examination’

  • This section contains requirements and methods for non-destructive examination referenced and required by other code sections.

Day 5 - Fitness-For-Service Evaluation

Introduction to Fracture Mechanics

  • Overview
  • Illustrative worked examples

Fitness-for-Service Assessment

  • Overview of API Std. 579-1/ASME FFS-1
  • Worked examples



Related Training Courses

Course Details
  • Code MAE17
  • Start 09:00 AM - Oct 7 2018
  • END    12:30 PM - Oct 11 2018
  • Istanbul , Taksim Square
  • +44 2087206971
  • Training@bmc.net

Fees Per Person

4950 GBP + VAT
Register Now Send an Enquiry Download PDF Brochure Other Dates

Courses Search

Recent Posts

Connect with us

IFRS Preparation. (5 Days)Available in London - Dubai - Istanbul - Kuala Lumpur

Join our Civil and Construction Engineering Training Courses , Electrical and Power Engineering Training Courses and Facilities Management Training

Technical Training Courses

Newsletter